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Abstract
The ground-singlet state of an optical bipolaron in the region of intermediate
coupling strengths is analysed. It is shown that the spatial structure of a
bipolaron with intermediate coupling strength is that of an axially symmetric
quasi-molecular dimer. The bipolaron energies of coupling are determined
for different coupling constants and dielectric parameters of a medium. The
electronic terms of the ground-dimer state are represented as a function of the
distance between quasi-particles. The intermediate region of coupling constants
is shown to give rise to an additional specific term in the total energy, which
depends on the dielectric properties of a medium and makes the bipolaron
energy of coupling higher (at ε∗/ε∞ > 1.06) or lower (at ε∗/ε∞ < 1.06) than
the value in the limit of adiabatic and strong coupling.

1. Introduction

The problem of the existence of bipolarons in polar media has been repeatedly analysed
theoretically [1–11]. These works are mainly concerned with the ground-electronic state
of a bipolaron in the limit of a strong electron–phonon coupling (with dimensionless coupling
constant αc > 10). They contain contradictory data on both the possibility of the existence of
bipolarons in principle and the magnitude of their coupling energy. However, in actual practice,
most media are characterized by the so-called intermediate coupling strength (αc ∼ 5–10).
Formally, the approaches of the method of strong coupling are inapplicable in this case and
one should use methods of intermediate coupling strength.

In the present work, we study the ground-electronic state of a singlet-optical bipolaron
in the region of intermediate coupling constants and compare our quantitative results with the
previously known data [2, 3] for the limiting case of adiabatic and strong electron–phonon
coupling.

The analysis is based on the method of arbitrary coupling strength, developed by
Buimistrov and Pekar [12]. The accuracy of the method compares well with that of the
method of functional integration [13] and makes it possible to obtain the total energy of an
optical polaron in the intermediate region of coupling constants, whose position on the energy
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scale is lower by approximately 5% than the value obtained by the Feynman method [13].
The special feature of the method [12] is that it takes into account the dependence of the
equilibrium positions of quantum field oscillators in the presence of charged particles on the
coordinates of the particles themselves. This means that ions respond not only to the average
electron field, but to the instantaneous electron field as well. With increasing coupling strength,
the dependence on the coordinates becomes weaker and the results produced by the method
are approaching in a natural way those for the case of strong coupling.

2. Method and basic equations

For a non-degenerate electron band, the Hamiltonian of a two-electron system interacting with
longitudinal optical phonons of the dielectric continuum can be written in the isotropic effective
mass approximation in the form

H =
∑
j=1,2

p2
j

2m∗ +
∑

�f ,j=1,2

Aj

[
exp

(
i �f �rj

)
b �f + exp

(
−i �f �rj

)
b+

�f
]

+
1

2

∑
�f
h̄ω �f

(
b �f b

+
�f + b+

�f b �f
)

+
e2

ε∞ |�r1 − �r2| . (1)

The Hamiltonian (1) is valid in the case when the energy surface has a spherical shape and the
minimum of the surface in the �K space coincides with the point �K = 0. In the Hamiltonian (1),
the following notation is used: b �f and b+

�f are the Bose creation and annihilation operators for a

longitudinal optical phonon with wave vector �f and frequencyω �f ; �rj is the radius vector of j -th
electron, with the origin of coordinates coinciding with the polaron’s centre of gravity; m∗ is
the effective electron mass at the conduction band bottom. The last term in (1) describes the
screened direct Coulomb interaction between electrons. In the present work, we use complex
coordinates of running plane waves in contrast to the method [12] employing standing waves
normalized to the volume V for the Hamiltonian of lattice vibrations.

The Fourier coefficientsAf characterizing the interaction of an electron with longitudinal
optical phonons has the form

Af = 2αc
h̄ωf∣∣∣ �f
∣∣∣
(
πh̄2ε∗

V e2m∗

)1/2

αc = e2

2ε∗h̄ωf

(
2m∗ωf
h̄

)1/2

. (2)

Here, V is the volume of the main region of periodicity, 1/ε∗ = ε−1
∞ − ε−1

s is the effective
dielectric constant of the medium, and αc is the dimensionless electron–phonon coupling
constant.

In what follows it is convenient to pass in the Hamiltonian (1) from the operators bf and
b′
f to normal coordinates and the canonically conjugate phonon momenta

qf = bf + b+
−f√

2
q∗
f = q−f pf = −i

bf − b+
−f√

2
p∗
f = p−f (3)

with the conventional quantization conditions for the dimensionless operators:
[qf , pf1 ] = iδff1 , [qf , qf1 ] = [pf , pf1 ] = 0. Using transformation (3), the Hamiltonian (1)
can be written in the form

H =
∑
j=1,2

p2
j

2m∗ +
∑

�f ,j=1,2

Af

[
exp

(
i �f �rj

)
q �f + exp

(
−i �f �rj

)
q− �f

]
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+
1

2

∑
�f
h̄ω �f

(
q �f q− �f + p �f p− �f

)
+

e2

ε∞ |�r1 − �r2| . (4)

Let us make a change from the coordinates q �f to the new coordinates q ′
f = qf −q0

f (�r1, �r2).
Here, q0

f (�r1, �r2) are the equilibrium positions of the quantum field oscillators, dependent on
the coordinates �rj . When written in terms of new variables, the Hamiltonian (4) has the form

H = −
∑
j=1,2

h̄2

2m∗

[
�j − 2

∑
�f

[∇j q0
f

(�rj ) ,∇j ] ∂
∂q ′
f

−
∑

�f

[∇j q0
f (�rj )

] ∂
∂q ′
f

+
∑
�f , �f1

[∇j q0
f

(�rj ) ,∇j q0
f1

(�rj )] ∂2

∂q ′
f ∂q

′
f1

]
+

e2

ε∞ |�r1 − �r2|

+
∑

�f ,j=1,2

h̄ωf

2

[[
q0
f

(�rj ) + q ′
f

] [
q0

−f
(�rj ) + q ′

−f
]− ∂2

∂q ′
f ∂q

′
−f

]

+
∑

�f ,j=1,2

Af

{
exp

(
i �f �rj

) [
q0

�f
(�rj ) + q ′

f

]
+ exp

(
−i �f �rj

) [
q0

−f (�rj ) + q ′
−f
]}
. (5)

Following the method [12], we approximate the total wave function of the electron–
phonon system by the multiplicative form � = ϕ(�r1, �r2)�(. . . q ′

f . . .), where ϕ(�r1, �r2) is the
symmetrized two-centre two-electron wave function (in the general case under consideration,
the centres of gravity of two polarons are not spatially coincident and the distance between
them is R [2]) and �(. . . q ′

f . . .) is the wave function describing the motion of displaced
quantum field oscillators. As shown in [8,11], the multiplicative approximation to the function
is suitable for all values of the coupling constant αc.

Using the multiplicative approximation to the wave function and taking into account that
each of the functions ϕ(�r1, �r2) and�(. . . q ′

f . . .) is normalized individually, we obtain from (5)
the following functional of the total energy of the system

Q[�] = −
∑
j=1,2

h̄2

2m∗

∫ ∣∣∇jϕ(�r1, �r2)∣∣2 dτj +
∑

�f ,j=1,2

h̄ωf

2

〈
ϕ
∣∣q0
f

(�rj ) q0
−f
(�rj )∣∣ϕ〉 +

〈
ϕ

∣∣∣∣ e2

ε∞r12

∣∣∣∣ϕ
〉

+
∑

�f ,j=1,2

Af

[〈
ϕ

∣∣∣exp
(

i �f �rj
)
q0
f

(�rj ) + exp
(
−i �f �rj

)
q0

−f
(�rj )∣∣∣ϕ〉]

−
∑

�f ,j=1,2

h̄ωf

2
αf (j)

〈
�

∣∣∣∣∣ ∂2

∂q ′
f ∂q

′
−f

∣∣∣∣∣�
〉

+
∑

�f ,j=1,2

h̄ωf

2

〈
�
∣∣q ′
f q

′
−f
∣∣�〉

+
∑

�f ,j=1,2

h̄ωf

2

[
βf (j)

〈
�
∣∣q ′
f

∣∣�〉 + β−f (j)
〈
�
∣∣q ′

−f
∣∣�〉] . (6)

Here, �r12 = �r1 − �r2 and

αf (j) = 1 +
h̄

m∗ωf

〈
ϕ

∣∣∣∣∣∂q
0
f1

∂�rj
∂q0
f

∂�rj

∣∣∣∣∣ϕ
〉

βf (j) = 〈
ϕ
∣∣q0

−f
(�rj )∣∣ϕ〉 + 2Af

h̄ωf

〈∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 .

(7)

When deriving (6), we took into account that 〈�|∂/∂qf |�〉 = 0.
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Extremalizing the functional (6) for �, we can easily obtain a wave equation describing
the oscillations of the quantum polarization field in the presence of charges,

−αf (j) ∂2

∂q ′
f ∂q

′
−f
� +

[
q ′
f q

′
−f + βf (j)q

′
f + β−f (j)q ′

−f
]
� = 2λf (j)

h̄ωf
� . (8)

From equation (8) we have

λf (j) = h̄ωf

2

[(
1 + 2nf

)√
αf (j)− β2

f (j)
]
nf = 0, 1, 2, . . . . (9)

Excluding from the functional (6) the coordinates q ′
f and using (8) and (9), we obtain the

bipolaron (bp) functional

Qbp[ϕ] =−
∑
j=1,2

h̄2

2m∗

∫ ∣∣∇jϕ (�r1, �r2)∣∣2 dτj−
∑

�f ,j=1,2

2A2
f

h̄ωf

〈
ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈ϕ∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉

+
∑

�f ,j=1,2

h̄ωf

2

[〈
ϕ
∣∣q0
f (j)q

0
−f (j)

∣∣ϕ〉− 〈
ϕ
∣∣q0
f (j)

∣∣ϕ〉 〈ϕ ∣∣q0
−f (j)

∣∣ϕ〉] +

〈
ϕ

∣∣∣∣ e2

ε∞r12

∣∣∣∣ϕ
〉

+
∑

�f ,j=1,2

h̄ωf

2

(
1 + 2nf

) (
1 +

h̄

2m∗ωf

〈
ϕ

∣∣∣∣∣∂q
0
−f ∂q

0
f

∂�rj ∂�rj

∣∣∣∣∣ϕ
〉)

+
∑

�f ,j=1,2

Af

[〈
ϕ

∣∣∣exp
(

i �f �rj
)
q0
f (�rj )

∣∣∣ϕ〉− 〈
ϕ

∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 〈∣∣q0

−f
(�rj )∣∣ϕ〉]

+
∑

�f ,j=1,2

Af

[〈
ϕ

∣∣∣exp
(
−i �f �rj

)
q0

−f
(�rj )∣∣∣ϕ〉− 〈

ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈∣∣q0
f

(�rj )∣∣ϕ〉] . (10)

The vibrational quantum numbers take the values nf = 0, 1, 2, . . .. To determine the
displacements q0

f and q0
−f , we have to extremalize the functional (8) and find the equations

describing the change in q0
f and q0

−f . However, it is more convenient to use the approximation
from [12], which gives for the one-particle state correct results in the limits of weak and strong
coupling

q0
f (�r1, �r2) =

∑
j=1,2

cf (j) exp
(

i �f �rj
)

(11)

where cf (j) is variational parameter determined by minimizing the functional

Qbp[ϕ] =−
∑
j=1,2

h̄2

2m∗

∫ ∣∣∇jϕ (�r1, �r2)∣∣2 dτj−
∑

�f ,j=1,2

2A2
f

h̄ωf

〈
ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈ϕ∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉

+
∑

�f ,j=1,2

h̄ωf

2
cf (j)c−f (j)

[
1−
〈
ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈ϕ ∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉]+

〈
ϕ

∣∣∣∣ e2

ε∞r12

∣∣∣∣ϕ
〉

+
∑

�f ,j=1,2

h̄ωf

2

(
1 + 2nf

) (
1 +

h̄

2m∗ωf
cf (j)c−f (j)f 2

)

+
∑

�f ,j=1,2

h̄ωf

2

{[
cf (j) + c−f (j)

] [
1 −

〈
ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈ϕ ∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉]} (12)

with the variation parameter given by

c−f (j) = −2Af
h̄ωf

1 −
〈
ϕ

∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 〈ϕ ∣∣∣exp

(
−i �f �rj

)∣∣∣ϕ〉
h̄
(
2m∗ωf

)−1
f 2
(
1 + nf

)
+1−

〈
ϕ

∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 〈ϕ∣∣∣exp

(
−i �f �rj

)∣∣∣ϕ〉 . (13)
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Substituting the parameters (13) into the initial functional (12) and taking into account
that cf (j) = c−f (j), we obtain the following expression for the total energy of a bipolaron
with an intermediate coupling strength

Qbp[ϕ] = −
∑
j=1,2

h̄2

2m∗

∫ ∣∣∇jϕ (�r1, �r2)∣∣2 dτj +

〈
ϕ

∣∣∣∣ e2

ε∞r12

∣∣∣∣ϕ
〉

−
∑

�f ,j=1,2

2A2
f

h̄ωf

〈
ϕ

∣∣∣exp
(
−i �f �rj

)∣∣∣ϕ〉 〈ϕ ∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 +

∑
�f

h̄ωf

2

(
1 + nf

)

−
∑

�f ,j=1,2

A2
f

h̄ωf

[
1 −

〈
ϕ

∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 〈ϕ ∣∣∣exp

(
−i �f �rj

)∣∣∣ϕ〉]2

h̄
(
2m∗ωf

)−1
f 2
(
1 + 2nf

)
+ 1 −

〈
ϕ

∣∣∣exp
(

i �f �rj
)∣∣∣ϕ〉 〈ϕ ∣∣∣exp

(
−i �f �rj

)∣∣∣ϕ〉
(14)

Qbp[ϕ] = Jbp[ϕ] −Gbp[ϕ] +
∑

�f

h̄ωf

2

(
1 + nf

) = Fbp[ϕ] +
∑

�f

h̄ωf

2

(
1 + nf

)
. (15)

The energy of a free electron with effective mass m∗ at the bottom of the conduction
band is taken as zero energy. The functional (14) depends only on the function ϕ. The
integro-differential equation for the function can be found from the extremum condition for
this functional.

The contribution of the componentGbp[ϕ] to the total functional is determined by the last
term in (15) and is specific to the method of intermediate strength of coupling. In the limit of
strong coupling it tends to a constant.

The functional Jbp[ϕ] includes three first terms from (14) and determines the total self-
consistent energy of the two-polaron system in the limit of strong coupling, proportional
to αc. An analysis of the functional F [ϕ] for the one-electron case has shown [12] that it
describes reliably one-particle states in both the limiting cases, corresponding to strong and
weak electron–phonon coupling. The limit of strong coupling gives a result corresponding to
the adiabatic approximation, and that of weak coupling, a result corresponding to the second-
order approximation of the perturbation theory.

For the two-particle problem, the self-consistent functional Jbp[ϕ] was discussed in detail
in [2–5], with account taken of the dynamic interelectron correlations, as a function of the
distance R between polarons and of the dielectric parameters of the medium. Making in the
functional Jbp[ϕ] a change from the f representation to the coordinate representation, we can
write it in the two-particle case in the form

Jbp[ϕ] =
∑
j=1,2

h̄2

4m∗

∫
∇2
j ρ1

(�rj ) dτj − 1

4

∫
dτ1dτ2ρ2 (�r1, �r2)

×
[

1

ε∗
∑
j=1,2

ρ1
(�r ′j ) g (�rj , �r ′j ) dτ ′

j − 2

ε∞
g (�r1, �r2)

]
(16)

whereg(�r1, �r2) = e2/r12 is the operator of the interelectron interaction andρ1(�r1) andρ2(�r1, �r2)
are the one- and two-particle functions of electron density [2–5]. The interpolaron distance R
appears in (16) as a parameter. In the zero approximation, the symmetrized two-particle wave
function ϕ(�r1, �r2) is chosen in the Heitler–London form

ϕ (�r1, �r2) = N [χs,a (�r1) χs,b (�r2) + χs,b (�r1) χs,a (�r2)
]

(17)

where the one-electron spherically symmetric wave functions χs,a(�r1) and χs,b(�r2) have the
centres a and b, which coincide with the centres of gravity of the polarons, and are spatially
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separated by a distance R; N = (1 +S2)−1/2, and S = 〈χs,a(r)|χs,b(r)〉 is the overlap integral.
Using the wave function (17), the functional (16) can be rewritten in the form

Jbp = h̄2

2m∗ (1 + S2
) ∫ [∣∣∇1χs,a (r1)

∣∣2 + 2S∇1χs,a (r1)∇1χs,b (r1) +
∣∣∇1χs,b (r1)

∣∣2] dτ1

− e2

2ε∗
(
1 + S2

)2

(
I1 + 4S2I2 + I3 + 8SI4 + 2I5

)
+

e2

2ε∞
(
1 + S2

) (I1 + 2I2 + I3)

(18)

with the following designations used for two-centre integrals

I1 =
∫
χ2
s,a (r1) χ

2
s,b (r1) r

−1
12 dτ1dτ2 I2 =

∫
χs,a (r1) χs,b (r1) χs,a (r2) χs,b (r2) r

−1
12 dτ1dτ2

I3 =
∫
χ2
s,b (r1) χ

2
s,a (r1) r

−1
12 dτ1dτ2 I4 =

∫
χs,a (r1) χs,b (r1) χ

2
s,a (r2) r

−1
12 dτ1dτ2

I5 =
∫
χ2
s,a (r1) χ

2
s,a (r1) r

−1
12 dτ1dτ2 (19)

In subsequent refinements of the energy of the system, we added complexity to the electron
part of the wave function by including the interelectron correlation effects. The method of
inclusion of these correlations, described in [2–5], assumes that the spectrum of the one-electron
problem is known. The importance of taking into account the interelectron correlations when
finding the coupling energy in self-trapped two-electron systems was noted in [14]. In this case
the coupling is determined by the screening of the direct Coulomb repulsion by the phonon
exchange effects, and the interaction potential, by the pair forces depending on the interelectron
distance r12.

The one-particle spherically symmetric 1s wave functions for the ground-electronic state
of an optical polaron were chosen in the form

χs(r) =
(
α3

7π

)1/2

(1 + αr) exp(−αr) (20)

where α is the variational parameter determined from the minimum condition for the functional
Fbp[ϕ]; the origin of co-ordinates is coincident with the centre of gravity of a polaron at the
centre a. The use of the wave function approximation in the form (20) in the direct variation
method gives the total energy of the one-particle state, differing from the result obtained by
direct numerical solution of the nonlinear integro-differential Euler equation [15] by a fraction
of a percent.

In the general case, when making numerical calculations with the use of the two-electron
functional Fbp[ϕ] on the basis of two-centre wave functions, one comes up against the problem
of calculation of two-centre integrals (19). To overcome this problem, we use the method [16]
which reduces the wave function centred at b to the centre a, thereby reducing the two-centre
integrals to one-centre integrals. With this method employed, the radial partRs(r) of the wave
function χs,b(r) in the coordinates related to the centre a can be expressed in the following
way

Rs(r) = π

α2Cr

[(
A1−A2r+A3r

2
)

exp(αr)−(A1+A2r+A3r
2
)

exp(−αr)] exp(−C) r < R

Rs(r) = π

α2Cr

[(
B1 − B2r + B3r

2
)

exp(−αr)] r > R (21)

where

A1 = 2
(
3 + 3C + C2

)
A2 = 2α(3 + 2C) A3 = 2α2
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A4 = 2
(
3 − 3C + C2

)
A5 = 2α(3 − 2C) C = αR

B1 = A4 exp(C)− A1 exp(−C) B2 = A5 exp(C)− A2 exp(−C)
B3 = A3[exp(C)− exp(−C)] .

In formula (21), the electron coordinate r is reckoned from the centre a. The calculation of
the integrals appearing in (15) on the basis of functions (20) and (21) is no particular problem,
and the result can be represented in terms of elementary functions, but the final expression for
the total energy is too cumbersome and is not presented here for this reason. The reduction of
the two-centre integrals to the one-centre integrals makes it possible to find the integrals in the
functional (14) in the analytical form and obtain the result as a function of the wave vector �f
and distance R.

3. Results and discussion

Using the direct variational method, we calculated from the functional of total energy (15)
the energy of coupling for a singlet bipolaron �F = Fbp − 2Fp as a function of the distance
R between the centres of gravity of quasi-particles for fixed ratios of dielectric constants
ε∗/ε∞ = 1.0 (the limiting case of εs � ε∞) (figure 1) and ε∗/ε∞ = 1.08 (figure 2) for the
coupling constants αc = 5, 7 and 10. Fp is the total energy of a free optical polaron.

With decreasing distance between polarons, the polarization effects caused by each of
them start to interfere, which lowers the total energy of the two-electron system and gives rise
to a bound state. At R → 0, the direct Coulomb interaction dominates over the polarization
effects, which leads to the formation of a maximum of the binding-energy curve at the point
R = 0. At R → ∞, the two terms in braces in (16) give the conventional electrostatic
interaction between classical charges, e2/εsR. In this case, a transition from the region of a
minimum of the total bipolaron energy to the region of classical electrostatic repulsion naturally
results in the formation of a potential barrier.

The case of ε∗/ε∞ = 1.0 corresponds to the maximum possible bipolaron coupling energy
for the given coupling constant. The region of permissible dielectric media characterized by
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Figure 1. Bipolaron energy of coupling as a function of the distance between polarons for the
coupling constants αc = 5, 7 and 10 (curves 1, 3 and 5, respectively) and ε∗/ε∞ = 1.0. The full
curves are calculated by equation (15) (term Fbp). The broken curves (2, 4 and 6, respectively) are
plotted for Jbp corresponding to the limiting case of adiabatic and strong coupling.
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the existence of stable bipolaron systems is defined by the inequality ε∗/ε∞ � 1.13, being
somewhat wider than that in the limit of the extremely strong coupling (ε∗/ε∞ � 1.125 [2–5])
because of the inclusion of the additional termGbp. A quasi-stationary bipolaron system may
exist in dielectric media with ε∗/ε∞ > 1.13. In this case, the coupling energy �Fbp > 0,
but, nevertheless, two-electron states are separated by a barrier from the state of uncoupled
polarons. This value of the parameter ε∗/ε∞ is close to the previously found values of 1.13 [11]
and 1.14 [7].

In concrete numerical calculations, we restricted our consideration to the case of a single
branch of longitudinal polarization vibrations with the limiting frequency ωf = ω, which
corresponds to the long-wavelength limit �f = 0. Also, we chose for the lowest ground state
the quantum number nf = 0, i.e., the temperature (T ) range was limited by the inequality
kBT � h̄ω.

To compare the results for the intermediate coupling strength and strong coupling, we
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Figure 2. Bipolaron energy of coupling as a function of the distance between polarons for the
coupling constants αc = 5, 7 and 10 (curves 1, 3 and 5, respectively) and ε∗/ε∞ = 1.08. The full
curves are calculated by equation (15) (term Fbp). The broken curves (2, 4 and 6, respectively) are
plotted for Jbp corresponding to the limiting case of adiabatic and strong coupling.
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ratio ε∗/ε∞ for different coupling constants αc.
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Figure 5. Variation of the additional term Gbp at the point of minimum total energy with
the dimensionless coupling constant. Curve 1 corresponds to ε∗/ε∞ = 1.0, and curve 2, to
ε∗/ε∞ = 1.08.

present in figures 1 and 2 the coupling energies �Fbp > 0 and �Jbp = Jbp − 2Jp (here,
Jp = −0.1072α2

c h̄ω). It can be readily seen from the figures that the inclusion of the additional
termGbp[ϕ] into the total functional gives at intermediate coupling strengths a correction to the
main functional Jbp[ϕ] obtained in the adiabatic approximation. In the region of the interaction
potential minimum, the contribution of the term�Gbp to the total coupling energy depends on
both the ratio ε∗/ε∞ and the coupling constant. The effect of the inclusion of the additional
term Gbp in the total energy on the bipolaron energy of coupling may vary. At ε∗/ε∞ = 1.0,
this contribution makes the coupling energy lower, with the contribution to the coupling energy
being about 16% for αc = 5 and as low as 4% for αc = 10. At ε∗/ε∞ = 1.08, the contribution
of�Gbp is 5% and 1.7%, respectively, and the coupling energy increases. The change�Gbp/2
at the point of minimum polaron interaction in a wide region of dielectric parameters is shown
in figure 3. Near the critical value ε∗/ε∞ = 1.06–1.065, the differenceGbp − 2Gp reverses its
sign. Here account is taken of the following polaron energies: Gp = 1.622, 1.688, 1.737 and
1.757h̄ω, for coupling constants αc = 5, 7, 10 and 20, respectively. Thus, the contribution of
Gbp makes the bipolaron coupling energy lower for ε∗/ε∞ < 1.06 and higher for ε∗/ε∞ > 1.0.
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The variation of the additional term of the total energy, Gbp, with distance (figure 4)
qualitatively reproduces the variation of the coupling energy associated with the contribution
of Jbp, but the quantitative distinctions are significant. This behaviour of Gbp as a function of
distance R makes it possible to minimize the functional Jbp, rather than the functional Fbp, in
the variational calculations. The extreme values of the variational parameters obtained in this
case can be further used to calculate the function Fbp. Gbp at the point of the minimum polaron
interaction potential is shown as a function of the coupling constant in figure 5 for different
ε∗/ε∞ values. The contribution of Gbp grows smoothly with increasing coupling constant,
showing a tendency to saturate.

From figures 1 and 2 it can be seen that the bipolaron potential well becomes shallower
with decreasingαc. The critical valuesα(cr)

c below which the connected bipolaron does not exist
have been obtained previously: ∼ 6.8 [17], 7.3 [7] and 9.3 [11]. Genarally, α(cr)

c are functions
of the parameter ε∗/ε∞: the higher ε∗/ε∞ the greater α(cr)

c . The following values of the critical
parameters were obtained: α(cr)

c � 5.3 at ε∗/ε∞ = 1.00, α(cr)
c � 7.0 at ε∗/ε∞ = 1.08 and

α
(cr)
c � 10 at ε∗/ε∞ = 1.12. The presence of a potential well does not mean yet the existence

of a connected bipolaron. From figure 2 it follows that at ε∗/ε∞ = 1.08 and α(cr)
c = 5.0 there

is a bipolaron potential well. However, it can be shown using the method proposed in [18]
that at αc = 5 no connected bipolaron is formed. The connected condition only appears at
α
(cr)
c > 7.0.

An analysis made for the ground-singlet term of an optical bipolaron showed that the
bipolaron coupling energy at intermediate electron–phonon coupling constants is mainly
determined by the term Jbp obtained in the limit of strong coupling, and the specific termGbp

introduces a correction. However, the region of permissible dielectric media (ε∗/ε∞ = 1.125),
determined in [2–5] and characterized by the possibility of existence of bipolaron systems
becomes somewhat wider owing to the inclusion of this specific interaction.
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